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Abstract-In the two-fluid model, interfacial concentration is one of the important parameters. The 
objective oF this study is to develop an interfacial area equation with the source and sink terms being 
properly mf>deled. For bubble coalescence, the random collisions between bubbles due to turbulence, and 
the wake entrainment process due to the relative motions of the bubbles, were included. For bubble 
breakup, the impact of turbulent eddies is considered. Compared with measured axial distributions of the 
interfacial area concentration under various flow conditions, the adjustable parameters in the source/sink 
terms were obtained for the simplified one-dimensional transport equation. 0 1997 Elsevier Science Ltd. 

11. INTRODUCTION 

In the analysis of two-phase flow, the formulation 
using a two-fluid model is considered as the most 
accurate model. With proper averaging in this model 
[l-4], the two phases are considered separately in 
terms of two sets of conservation equations that gov- 
ern the balance of mass, momentum and energy in 
each phase. However, the averaged macroscopic fields 
of the two phases are not independent of each other, 
and there are certain phase interaction terms in the 
field equations to characterize the interfacial transfer 
of mass, momentum and energy. These terms all con- 
tain a parameter tlhat specifies the geometric capability 
of the interfacial transfer, i.e. the interfacial area con- 
centration, defined as the total surface area of the 
dispersed fluid particles per unit mixture volume [5]. 
Therefore, a closure relation for the interfacial area 
concentration is indispensable in the two-fluid model 
concerning the detailed treatment of the phase inter- 
actions. 

Since the interfacial area concentration changes 
with the variation of the particle number density due 
to coalescence and breakage, analogous to Boltz- 
mann’s transport equation, a population balance 
approach (PBA) was proposed by Reyes [6] to 
develop a particle number density transport equation 
for chemically non-reacting, dispersed, spherical fluid 
particles. A simil.ar method was employed in com- 
bustion theory, known as the spray-equation [7]. For 
the purpose of interfacial area transport, Koca- 

mustafaogullari and Ishii [8] generalized Reyes’ 
model, leading to the following equation : 

where f(~, Y, t) is the particle number density dis- 
tribution function, which specifies the probable num- 
ber of fluid particles at a given time t, in the spatial 
range of d.% about a position R, with particle volumes 
between Y and Y +dY. Moreover, V&Y, Y, t) 
denotes the local time-average velocity of the particles, 
and s,,,,(R, “Y, t) refers to the fluid particle sink or 
source rate due to phase change. If the phase change 
only causes fluid particle shrinkage or expansion, Q, 
can be expressed in the form of - a/&(f dY/dt), a 
term Shraiber [9] thought should be presented on the 
left-hand side of equation (1). However, for the case 
of homogeneous nucleate boiling or condensation in 
a subcooled boiling flow, sph should also include the 
rate of change of the fluid particle population with 
specific volumes. Detailed studies on the phase change 
term follow the approach of Kocamustafaogullari and 
Ishii [lo]. 

The interaction term, s,(~, Y, t), represents the net 
rate of change of the particle number density dis- 
tribution function caused by particle breakup or 
coalescence process. Some phenomenological models 
for these terms were summarized by Prince and Blanch 
[ 111, and Lafi and Reyes [ 121. These models presented 
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NOMENCLATURE 

a area concentration 
C constant, drag coefficient 

r” 
bubble Sauter mean diameter 
two-phase friction factor 

j superficial velocity 
L length 
n bubble number density 

x 
collision frequency for two bubbles 
collision rate 

Re Reynolds number 
s volume dependent source/sink terms 
s source/sink terms 
t time 
T time 
u velocity 

> 
velocity 
bubble volume 

We Weber number 
x space coordinates 
Z ilow direction coordinate. 

Greek symbols 
a void fraction 
A difference 
& averaging factor 

c1 dynamic viscosity 
P density 
CJ surface tension. 

Subscripts 
interfacial area concentration 

: bubble 
cr critical 

B 
effective 
liquid 
gas 

: hydraulic 
i interfacial 
m mixture 
max maximum 
n bubble number density 
P particle/bubble 
ph phase change 
pm bubble mean value 
RC random collision 
t turbulent 
TI turbulent impact 
Y- bubble volume 
W bubble wake 
WE wake entrainment. 

the detailed insight of the mechanisms for coalescence 
and breakage phenomena. However, due to the depen- 
dence on the fluid particle volume, many adjustable 
parameters and assumptions were imposed that may 
be beyond justification with the existing experimental 
data. For most two-phase flow studies, where the pri- 
mary focus is on the average fluid particle behavior, 
the detailed volume dependent particle number den- 
sity transport equation would be too tedious and com- 
plicated for use in the field equations. Hence, the pre- 
sent study starts from the following integral form of 
the particle number density transport equation : 

an(2, t) 
at + v &n(% t)@, 0) 

= c &,(% 0 + S”,Ph @, 4 (2) 
I 

where n@, t) is the number density of particles of all 
sizes, and v~,,,(R, t) is the average local particle velocity 
weighted by the particle number, which is identical to 
the time-averaged bubble velocity weighted by the gas 
void fraction, Tg,, in the time-averaged two-fluid model 
[3], if the statistical sample size is sufficiently large. 
On the right-hand side of equation (2), S,, and &,, 
represent the total bubble number source or sink rate 
per unit mixture volume. 

To model the integral source and sink terms in 

equation (2) caused by particle coalescence and break- 
age, a general approach treats the bubbles in two 
groups : the spherical/distorted bubble group and the 
cap/slug bubble group [13], resulting in two bubble 
number density transport equations that involve the 
inner and inter group interactions, as shown in Fig. 1. 
The mechanisms of these interactions can be sum- 
marized in five categories : the coalescence due to ran- 
dom collisions driven by turbulence, the coalescence 
due to wake entrainment, the breakage due to the 
impact of turbulent eddies, the shearing-off of small 
bubbles from cap bubbles, and the breakage of large 
cap bubbles due to flow instability on the bubble 
surface. Some other mechanisms, such as laminar 
shearing induced coalescence [14] and the breakage 
due to velocity gradient [15], are excluded because 
they are indirectly caused by the distributions of the 
flow parameters and void fraction [ 161, and the direct 
mechanisms still follow the above five categories. 

In practice, when the void fraction of a two-phase 
bubbly flow is small, no cap or slug bubbles exist. The 
two-group transport equations are then reduced to 
one group without the involvement of the interactions 
between the two groups. As the first step of the general 
approach, the focus of this study is on the first group 
transport equation for bubbly flow without the occur- 
rence of cap or slug bubbles. In Section two, three 
models are developed for binary bubble coalescence 
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Fig. 1. Mechanisms of bubble coalescence and break-up in two-group model. 

and breakage, including the bubble coalescence due 
to random collisions driven by turbulence, bubble 
coalescence due to wake entrainment, and bubble 
breakage due to the impact of turbulent eddies. With 
these models, the one-group interfacial area transport 
equation is obtained in Section 3, whereas the adjust- 
able parameters are evaluated in section four with the 
existing experimental data obtained from vertical two- 
phase bubbly flow [17]. The approach in this study 
provides a preliminary foundation for the latter phase 
investigation of the two-group transport equations, 
which serve as the general closure relation for inter- 
facial area concentration for the two-fluid model. 

2. MODELING OF BUBBLE COALESCENCE AND 

BREAKAGE 

For dispersed bubbly flow without phase change, 
only three mechanisms for bubble coalescence and 
breakage are considered in the following one-group 
bubble number density transport equation : 

a@, t) 
at + v $g.a, t)n(zi, t)) 

= &,,c @, 0 + S”,W&, 0 + S&T, (% 0 (3) 

where the subscript ‘n’ stands for net bubble number 
density change, ‘RC’ for random collision due to tur- 
bulence in the continuous medium, ‘WE’ for wake- 
entrainment, and ‘TI’ for turbulent eddies that impact 
on bubbles resulting in bubble breakage. In this 
section, these source and sink terms are modeled indi- 
vidually by assuming binary spherical bubble inter- 
actions. Throughout the study, the average bubble size 
is characterized by the bubble Sauter mean diameter, 
D E 6a/u,, where a and ai represent the local time- 
averaged void fraction and interfacial area concen- 
tration, respectively. 

2.1. Random collision induced bubble coalescence 
To model the bubble coalescence rate induced by 

turbulence in the continuous medium, the bubble ran- 
dom collision rate is of primary importance. These 
collisions are postulated to occur only between the 
neighbouring bubbles, because long range inter- 
actions are driven by large eddies that transport 
groups of bubbles without leading to significant rela- 
tive motion [ 11, 181. Between two neighboring spheri- 
cal bubbles of the same size as shown in Fig. 2, the 
time interval for one collision, At, is defined as 

At = E/u,. (4) 

Here, u, is the root-mean-square approaching velocity 
of the two bubbles, and t represents the mean trav- 
elling distance between the two bubbles for one colli- 
sion, which is approximated by : 

L-De-dDa(~-6,D)=~(l--b,.l”) (5) 

where De denotes the effective diameter of the mixture 
volume that contains one bubble. Since the bubble 
travelling length for one collision varies from De to 

Fig. 2. Geometric definitions of two approaching bubbles. 
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(De-D), a factor 6 is introduced in equation (5) to 
feature the average effect, whereas 6, is a collective 
parameter in considering the sign of proportionality 
between De and D/c?. For small void fraction, 6, 
plays a minor role due to the fact that De is much 
larger than D. However, it is important if the travelling 
length is comparable to the mean bubble size. When 
void fraction approaches the dense packing limit 
(c( E c(,,,), the mean travelling length should be zero, 
which leads to 6, equal to &y’. Using this asymptotic 
value as the approximation of 6,) the mean travelling 
length is reduced to : 

Accordingly, the collision frequency for two bubbles 
moving toward each other is given by : 

r 

Since the bubbles do not always move toward each 
other, however, a probability, PC, for a bubble to move 
toward a neighboring bubble is considered here to 
modify the collision rate. By assuming a hexagonal 
close-packed structure, this probability is given by : 

and PC = 1, c( > c(, (8) 

where tl, is the critical void fraction when the center 
bubble cannot pass through the free space among 
the neighboring bubbles. In reality, the neighboring 
bubbles are in constant motion, and the critical void 
fraction can be very close to the dense packing limit. 
This leads to : 

Subsequently, the collision rate for a mixture with 
bubble number density, n, is given by : 

The functional dependence of the above collision rate 
agrees with that of Coulaloglou and Tavlarides [18] 
proposed in 1976 for a liquid-liquid droplet flow 
system, analogous to the particle collision model in 
an ideal gas. The difference is that the present model 
contains an extra term in the bracket, which covers 
the situation when the mean free path of a bubble is 
comparable to the mean bubble size. Nevertheless, the 
model in the present form is still incomplete, since no 
matter how far away the neighboring bubble is 
located, the collision would occur as long as there is 
a finite approaching velocity. In actuality, when the 

mean distance is very large, no collision should be 
counted because the range of the relative motion for 
collisions between the neighboring bubbles is limited 
by the eddy size comparable to the bubble size. To 
consider this effect, the following modification factor 
is suggested for equation (10) : 

[l-exp(-C$)j (11) 

where L, is the average size of the eddies that drive 
the neighboring bubbles together, which is assumed 
to be on the same order of the mean bubble size, 
because smaller eddies do not provide considerable 
bulk motion to a bubble, while larger eddies transport 
groups of bubbles without significant relative motion. 
Thereafter, the final form of the bubble collision rate 
is given by : 

1 
R RC -(&D*) 

113 
%,x (c&fx - cc”3) I 

x 1 -exp -C ,,3 
[ ( 

113 
%ax~ 

II3 )I l/3 . (12) 4n,x -lx 
For each collision, coalescence may not occur and 

thus a collision efficiency was suggested by many 
investigators [19,20]. The most popular model for the 
collision efficiency is the film thinning model [20]. In 
this model when the bubbles approach faster, they 
tend to bounce back without coalescence due to the 
limitation of the film drainage rate governed by the 
surface tension. Mathematically, the coalescence rate 
decreases exponentially with respect to the turbulent 
fluctuating velocity, which is much stronger than the 
linear dependence of the collision rate, resulting in an 
overall decreasing trend of the coalescence rate as the 
turbulent fluctuation increases. This caused serious 
trouble when the model was applied to experimental 
data following the procedure specified in Section 4. 
Tremendous discrepancies were obtained at different 
liquid flow conditions. Hence, a constant coalescence 
efficiency is employed in the present model to depict 
the randomness of the coalescence phenomenon after 
each collision [16], and the bubble coalescence rate 
due to random collisions is given by : 

RRC = G,(w’D’) 
1 

(agx-a”‘) 1 

>I (13) 

where CRC and C are adjustable parameters, depend- 
ing on the properties of the fluid. Nevertheless, the 
constant coalescence efficiency is only an approxi- 
mation, and further efforts are needed to model the 
efficiency mechanistically. The remaining unknowns 
are the maximum void fraction and the mean bubble 
fluctuating velocity. By definition, @max is the dense 
packing limit of void fraction when the coalescence 
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rate approaches infinity. A rational choice of a,,,,, 
should be approximately 0.8 at the transition point 
from slug to annular flow [ 16, 211. The mean bubble 
fluctuating velocrty, ut, in equation (13) is pro- 
portional to the root-mean-square liquid fluctuating 
velocity difference between two points of length scale 
D, and is given by E”~D”~ [ 131. Here, E is the energy 
dissipation rate per unit mass of the continuous 
medium. In a complete two-fluid model, E comes from 
its own constitutive relation such as the two-phase K- 
E model [22, 231. For one-dimensional analysis, 
however, this term can be approximated by a simple 
algebraic equation, as suggested in Section 4. 

2.2. Wake-entraiirment induced bubble coalescence 
When bubbles enter the wake region of a leading 

bubble, they will accelerate and may collide with the 
preceding one [24-261. For a spherical air bubble with 
attached wake region in the liquid medium, the effec- 
tive wake volume, V,, in which the following bubbles 
may collide with the leading one, is defined as the 
projected bubble area multiplied by the effective 
length, L,. The number of bubbles inside the effective 
volume is then given by 

IV,,, = VW, z ;nD’(L,-D/2)n. (14) 

Assuming that the average time interval for a bubble 
in the wake region to catch up with the preceding 
bubble is AT, the collision rate per unit mixture vol- 
ume should satisfy : 

R &!k l WE 2 ATz gnD2n2 nv 

(15) 

where anu is the average relative velocity between the 
leading bubble and the bubble in the wake region. If 
the transient for a bubble to reach its terminal velocity 
is assumed to be much shorter than the collision 
process, the average relative velocity, anu, can be ex- 
pressed in terms of the relative velocities of the con- 
tinuous medium inside and outside the wake region : 

with Vr(z) as the local liquid velocity along the center 
line, z as the distance measured from the center of the 
leading bubble, and V,,, as the ambient liquid velocity. 
For spherical bubbles, since the external flow is almost 
indistinguishable from that around a solid sphere at 
the same Reynolds number [27], the wake structure 
of the leading bubble can be analogous to that around 
a solid sphere. In such a turbulent wake (Re, > 20), 
which satisfies most of the practical bubbly flow 
regimes, the wake velocity along the center line 
roughly satisfies [28] : 

213 

V,(z)- I’, = u,(D) (17) 

Here, u,(D) is the terminal velocity of a bubble of 
diameter D relative to the liquid motion. By inte- 
grating equation (17) over the effective wake length, 
the average relative velocity in the wake region is given 
by: 

= u,(D)F . (18) 

The exact form of F(D/L,) is not important since 
the effective bubble wake region may not be fully 
established. According to Tsuchiya [29], the wake 
length is roughly 5-7 times the bubble diameter in an 
air-water system, and thus D/Lw as well as F(D/L,) 
are treated as constants depending on the fluid proper- 
ties. As long as their values obtained from exper- 
imental data fall into the range of D/Lw = 5-7, the 
mechanism should be acceptable. Substituting equa- 
tion (18) into equation (15) yields the following simple 
expression of the bubble collision rate per unit mixture 
volume due to the wake-entrainment mechanism : 

R WE = CWED2u,(D)n2, with C,, = :F (19) 

where C,, is an adjustable constant mainly deter- 
mined by the ratio of the effective wake length to the 
bubble size and the coalescence efficiency. A proper 
choice for CwE should yield an effective wake length 
roughly between 5 and 7 from equations (19) and 
(18). The bubble terminal velocity, u,, is a function 
of the bubble diameter and local time-average void 
fraction. Based on the balance between the buoyancy 
force and drag force in a two-phase bubbly flow, Ishii 
and Chawla [30] applied a drag-similarity criterion 
with the mixture-viscosity concept to obtain the fol- 
lowing expression for the relative velocity : 

“’ 
(20) 

c 

D 
= 24U +O.lR@ and Re, ~ PfQ 

% 
I”rW). 

(21) 

2.3. Bubble breakup due to turbulent impact 
For binary bubble breakup due to the impact of 

turbulent eddies, the driving force comes from the 
inertial force, F,, of the turbulent eddies in the con- 
tinuous medium, while the holding force is the surface 
tension force, F,. To drive the daughter bubbles apart 
with a characteristic length of D within time interval 
At, a simple momentum balance approach gives the 
following relation : 

prD3D PK F,-F,,. 
AT2 

(22) 
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Here, the inertia of the bubble is dominated by the 
virtual mass because of the large density ratio of the 
liquid and gas. Rearranging equation (22) leads to the 
following average bubble breakup time : 

-I/Z 
w:D > , We=-- we 

cr 0 

(23) 

The velocity, U, is assumed to be the root-mean-square 
velocity difference between two points of length D, 
which implies that only the eddies with sizes equivalent 
to the bubble size can break the bubble. We,, is a 
collective constant, designated as a critical Weber 
number. The reported value of We,, for bubble 
breakup varies in a wide range due to the resonance 
excitation of the turbulent fluctuation [31]. In an air- 
water system, Prince and Blanch [11] suggested that 
We,, equals 2.3. Accordingly, if the bubble number 
density is n, the bubble breakup rate should be : 

(24) 

In a homogeneous turbulent flow, the probability 
for a bubble to collide with an eddy that has sufficient 
energy to break the bubble is approximately [18] : 

where u$, is the critical mean-square fluctuation vel- 
ocity obtained from We,. Finally, the bubble breakup 
rate per unit mixture volume is given by : 

R,, =CTiexp(-%)nz(l-%y2, 

We > We,,. (26) 

Again, the adjustable parameters C,, and We,, should 
be evaluated with experimental data. This expression 
differs from the previous models [I 1, 121 because the 
breakup rate equals zero when the Weber number is 
less than We,,. This unique feature permits the 
decoupling of the bubble coalescence and breakup 
processes. At a low liquid flow rate with small void 
fraction, the turbulent fluctuation is small and thus 
no breakup would be counted, which allows the fine- 
tuning of the adjustable parameters in the coalescence 
terms, independent of the bubble breakage. 

3. ONE-GROUP INTERFACIAL AREA 
CONCENTRATION TRANSPORT EQUATION 

In the two-fluid model, the parameter of interest is 
the interfacial area, a,, rather than the bubble number 
density. To obtain the transport equation for inter- 
facial area concentration, equation (2) can be modi- 
fied with the following geometric relation : 

where $ is a factor depending on the shape of the 

(27) 

bubbles, and ?Ir,, denotes the average bubble volume. 
For spherical bubbles $ equals 1/(36rc). Substituting 
equation (27) into equation (2) yields : 

The second term on the right-hand side represents the 
effects of the variation in bubble volume. If the gas 
phase is assumed to be incompressible without phase 
change, from the gas phase continuity equation, this 
term should be zero. Subsequently, the one-group 
interfacial area transport equation is reduced to : 

!$+V*(@J =$ $ 
0 

*(-RRC-RWE+RT,) 

= &,RC + &WE + &I. (29) 

With the models developed in Section 2, the net 
rates of change of interfacial area concentration per 
unit mixture volume are given below : 

S a,RC = - j$R"h"~) 
1 

aiJx 

(a$ - N”3) 1 
. (30) 

S &WE = - $ CWEuraf. (31) 

S 

, We > We,,. (32) 

Equations (29)-(32) constitute the one-group clos- 
ure relation of interfacial area concentration in two- 
phase vertical dispersed bubbly flow. The variables in 
these equations are coupled with the field equations 
in the two-fluid model. For the information of the 
local interfacial area concentration, the field equations 
should be solved together with the closure relations. 
However, the presented model is limited to the two- 
phase dispersed bubbly flow. At high void fraction 
when cap or slug bubbles appear, another transport 
equation should be provided for the interfacial area 
concentration of cap or slug bubbles. The two groups 
are not independent and the inter-group transfer terms 
should also be modeled individually. 
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4. EVALUATION OF THE ONE-GROUP MODEL 

The simplest form of the interfacial area transport 
equation is the one-dimensional formulation obtained 
by applying crosssectional area averaging over equa- 
tion (29) : 

== a,,,) + (&,w,) + <&,d. (33) 

Due to the uniform bubble size assumption, the area- 
averaged bubble interface velocity weighted by inter- 
facial area concentration can be given by : 

which is the same as the conventional area-averaged 
gas velocity weighted by void fraction, if the internal 
circulation in the bubble is neglected. The exact math- 
ematical expressions for the area-averaged source and 
sink terms would involve many covariances that may 
further complica.te the one-dimensional problem. 
However, since these local terms were originally 
obtained from a finite volume element of the mixture, 
the functional dependence of the area-averaged source 
and sink terms OIL the averaged parameters should be 
approximately the same if the hydraulic diameter of 
the flow path is considered as the length scale of the 
finite element. Therefore, equations (30)-(32) with the 
parameters averaged within the cross-sectional area 
are still applicable for the area-averaged source and 
sink terms in equation (33). 

To utilize the experimental data at different axial 
locations under steady-state condition, the transient 
term in equation (33) has to be dropped, resulting in 

(35) 

Without phase change, under the assumption of 
incompressible flow, the void fraction should be con- 
stant, independent of the axial positions. For a given 
flow condition, the only variable that should be speci- 
fied is the energy dissipation rate per unit mixture 
mass, E. A sophisticated approach is to couple the 
transport equation with the field equations and the 
constitutive relation of e, such as k-s model [25]. How- 
ever, for the purpose of evaluating the model in the 
one-dimensional form, a simple algebraic correlation 
for E is employed in this study : 

E =hw &W’ (36) 
h 

where (v,) is the mean mixture velocity, Dh refers to 
the hydraulic diameter of the flow path, and fTw is 
the two-phase friction factor. With p,,, as the mixture 
viscosity [30], fTylr is given by : 

fTw =h(;r25 =$&&-J. (37) 

To identify the adjustable parameters in the source 
and sink terms, experimental data of a steady air- 
water cocurrent up-flow in a 5.08 cm pipe [17] are 
used. In these experiments, interfacial area con- 
centration and void fraction were measured with a 
double-sensor conductivity probe at three different 
axial positions (L/D, = 2, 32, 62). In Table 1, seven 
cases of tests are summarized for different flow con- 
ditions. With the measured interfacial area con- 
centration at L/D,, = 2 as the initial condition, equa- 
tion (35) is integrated numerically to predict the axial 
distribution of interfacial area concentration, and the 
adjustable parameters are determined if the pre- 
dictions at the other two locations match the exper- 
imental data. At low liquid flow rate with small void 
fraction, bubble breakage can be neglected due to the 
very small Weber number compared to the critical 
value. Therefore, the fitting involves only three con- 
stants : CRC, C and C,,. After these parameters are 
fixed, the transport equation is further applied to high 
flow rate conditions solely for Cr, and We,,. The final 
results of these adjustable parameters are summarized 
in Table 1. For the wake-entrainment mechanism, 
C,, is 0.151. Assuming a flat cross-sectional wake 
velocity profile, the effective wake length for bubble 
coalescence as estimated from equations (18) and (19) 
is about seven times the bubble diameter, which agrees 
with the observation of Tsuchiya [29]. For bubble 
breakup, the critical Weber number is found to be 2.0 
for the best fitting to the experimental data, which is 
slightly smaller than 2.3, a value suggested by Prince 
and Blanch [l 11. This discrepancy may be caused by 
the one-group approach that assumes uniform bubble 
size. In reality, bubble breakage exists as long as the 
size of certain bubbles reaches the breakup limit in 
spite of the fact that the mean size does not exceed 
it. Therefore, the critical Weber number for bubble 
breakage based on the average bubble size should be 
smaller than that from the actual size of a breaking 
bubble. 

At a very low liquid flow rate with small void frac- 
tion, as in the case 1, no bubble breakage is involved. 

Table 1. Test conditions [ 171 and adjustable parameters 

Case 1 
Case 2 
Case 3 
Case 4 
Case 5 
Case 6 
Case 7 

C 
0.0&5 

0,) (m s-‘) 0,) (m s-l) (a> 

0.023 0.77 2.5% 
0.117 0.77 10.0% 
0.058 1.11 4.0% 
0.117 1.11 7.0% 
0.023 1.58 1.6% 
0.058 1.58 3.0% 
0.117 1.58 6.5% 

C GE We,, CT, 
3 0.151 0.18 2.0 
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Figure 3 illustrates such variation of the area-averaged 
interfacial area concentration in the flow direction. 
With the selected coefficients, no bubble breakage is 
present since the Weber number is smaller than the 
critical value. Since the void fraction is small, the 
change of interfacial area concentration caused by 
random collisions is only about one tenth of total 
decrease. However, as the void fraction increases to 
10% in case 2 with the same liquid superficial velocity 
as in case I, the change of interfacial area con- 
centration due to random collisions increases to 
roughly 20% of the total change, as shown in Fig. 4. 
Moreover, because of the large coalescence rate, the 
mean bubble size grows rapidly. At about L/D,, = 40, 
the bubble Weber number becomes greater than the 
critical value and thus the bubble breakage term must 
be taken into account, resulting in a slower decrease of 

20 
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Fig. 4. Axial variation of (a,) for case 2. 
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Fig. 5. Axial variation of (a,) for case 7. 
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the interfacial area concentration in the flow direction. 
An extreme condition is for case 7, as shown in Fig. 
5, with a liquid superficial velocity of 1.58 m SK’, 
where bubble breakage exists at the very beginning. 
In this case, the coalescence rate seems balance by 
the breakup rate along the flow path, resulting in a 
relatively flat axial distribution of the interfacial area 
concentration. Compared to the experimental data, 
all seven cases are shown in Figs. 6(a) and (b). The 
interfacial area concentrations predicted by the pro- 
posed model are generally in good agreement with the 
measurements at three axial positions. The maximum 
relative difference is about 8% at very small void 
fraction with high liquid flow rate. Nevertheless, the 
conclusion is based on the only set of published exper- 
imental data that have three axial measurements for 
each flow condition. Fine-tuning of the adjustable 
parameters is needed as more data become available. 
Moreover, the constant coalescence efficiency is only 
an approximation, and further efforts are needed to 
model the efficiency mechanistically. 

5. CONCLUSIONS 

In this study, a one-group interfacial area transport 
equation together with the modeling of the source and 
sink terms for bubble breakup and coalescence was 
presented. For bubble coalescence, two mechanisms 
were considered to be dominant in the vertical two- 
phase bubbly flow: the random collisions between 
bubbles due to turbulence in the flow field and the 
wake entrainment process due to the relative motion 
of the bubbles in the wake region of a seeding bubble. 
For bubble breakup, the impact of turbulent eddies 
was included. 

By area-averaging over the local one-group trans- 
port equation, a one-dimensional form of the inter- 
facial area concentration transport equation was 
obtained. Compared with experimental data for the 
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axial distribution of the interfacial area concentration 
under various flow conditions, the adjustable par- 
ameters in the model were obtained. The results indi- 
cate that the proposed models for bubble breakup 
and coalescence are appropriate. The ranges of the 
adjustable parameters agree with the physical obser- 
vations. However, the comparison was based on the 
only set of published experimental data that have three 
axial measurements for each flow condition. Fine- 
tuning of these adjustable parameters is needed as 
more data becomes available. When applied to three- 
dimensional cases, the adjustable parameters for the 
detailed localized transport equation have to be veri- 
fied through the coupling with the two-fluid model. 
Moreover, the constant coalescence efficiency in this 
study is only an approximation, and further efforts 
are needed to model the efficiency mechanistically. 

Acknowledgements--This study was supported by West- 
inghouse Bettis Attomic Power Laboratory. Valuable com- 
ments of MS T. Wilmarth de Leonardi are appreciated. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

Ishii, M. and Kojasoy, G., Interfacial area transport 
equation and preliminary considerations for closure 
relations. Technical report, PU-NE-93/6, Nuclear 
Engineering Department, Purdue University, West 
Lafayette, IN, 1993. 
Friedlander, S. K., Smoke, Dust and Haze. Wiley, New 
York, 1977. 
Taylor, G. I., The formation of emulsion in definable 
field of flow. Proceedings of Royal Society, (London) 
Series, 1934, A146, 501. 
Wu, Q., Kim, S., Ishii, M. and Beus, S. G., One-group 
interfacial area concentration transport in vertical air- 
water bubbly flow. International Heat Transfer Con- 
ference, HTC-Vol. 10, Baltimore, Maryland, 1997, p. 67. 
Kashyap, A., Ishii, M. and Revankar, S. T., An exper- 
imental and numerical analysis of structural devel- 
opment of two-phase flow in a pipe. Technical report, 
PU-NE-94/2, Nuclear Engineering Department, Purdue 
University, West Lafayette, IN, 1994. 
Coulaloglu, C. A. and Tavlarrides, L. L., Drop size 
distributions and coalescence frequencies of liquid- 
liquid dispersion in flow vessels. AIChE Journal, 1976, 
22,289. 
Oolman, T. and Blanch, H. W., Bubble coalescence in 
stagnant liquids. Chemical Engineering Communication, 
1986,43,237. 
Kirkpatrick, R. D. and Lockett, M. J., The influence 
of approach velocity on bubble coalescence. Chemical 
Engineering Science, 1974, 29,2363. 
Wallis, G. B., One-dimensional Two-phase Flow. 
McGraw-Hill, New York, 1969. 



1112 Q. WU et al. 

22. Serizawa, A. and Kataoka, I., Turbulence suppression 27. Clift, R., Grace, J. R. and Weber, M. E., Bubbles, 
in bubbly two-phase flow. Journalof Nuclear Engineering Drops and Particles. Academic Press, New York, 
and Design, 1991, 122, 1. 1978. 

23. Lopez de Bertodano, M., Lahey, Jr, R. T. and Jones, 0. 
C., Development of a k-e model for bubbly two-phase 
flow. Journal of Fluids Engineering, 1994, 116, 128. 

24. Otake, T., Tone, S., Nakao, K. and Mitsuhashi, Y., 
Coalescence and breakup of bubbles in liquids. Chemical 
Engineering Science, 1977, 32, 377. 

25. Bilicki, Z. and Kestin, J., Transition criteria for two- 
phase flow patterns in vertical upward flow. International 
Journal of Multiphase Flow, 1987, 13(3), 283. 

26. Stewart, C. W., Bubble interaction in low-viscosity 
liquid. International Journal of Multiphase Flow, 1995, 
21, 1037. 

28. White, F. M., Viscous Fluid Flow, 2nd edn. McGraw- 
Hill, New York, 1991, p. 481. 

29. Tsuchiya, K., Miyahara, T. and Fan, L. S., Visualization 
of bubble-wake interactions for a stream of bubble in a 
two-dimensional liquid solid fluidized bed. International 
Journal of Multiphase Flow, 1989, 15, 35. 

30. Ishii, M. and Chawla, T. C., Local drag laws in dispersed 
two-phase flow. Technical report, ANL-79-105, 
Argonne National Laboratory, Chicago, 1979. 

31. Sevik, M. and Park, S. H., The splitting of drops and 
bubbles by turbulent fluid flow. Journal of Fluids Engin- 
eering, 1973,95, 53. 


